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ABSTRACT

While parallel computers offer significant computational performance, it is generally nec-

essery to evaluate several programming strategies. Two programming strategies for a fairly

common problem--a periodic tridiagonal solver--are developed and evaluated. Simple model

calculations as well as timing results are presented to evaluate the various strategies.

The particular tridiagonal solver evaluated is used in many computational fluid dynamic

simulation codes. The feature that makes this algorithm unique is that these simulation

codes usually require simultaneous solutions for multiple right-hand-sides(RHS) of the sys-

tem of equations. Each RHS solutions is independent and thus can be computed in parallel.

Thus a C,aussian-elimination-type algorithm can be used in a parallel computation and the

more complicated approaches such as cyclic reduction are not required.

The two strategies are a transpose strategy and a distributed solver strategy. For the

transpose strategy, the data is moved so that a subset of all the RHS problems is solved on

each of the several processors. This usually requires significal_t data movement between pro-

cessor memories across a network. The second strategy attempts to have the algorithm follow

the data across processor boundaries in a chained manner. This usually requires significantly

less data movement. An approach to accomplish this second strategy in a near-perfect load-

balanced manner is developed. In addition, an algorithm will be shown to directly transform

a sequential Gaussian-elimination-type algorithm into the parallel, chained, load-balanced

algorithm.

*This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NASl-192999.

)Research supported by the National Aeronautics and Space Administration under Contract No. NAS1-

19480 while resident at the Institute for Computer Applications in Science and Engineering (ICASE), NASA
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1 Characteristics of parallel, distributed memory

computing related to CFD simulation codes

Parallel computing offers significantly increased performance for solving numerical

problems [4, 5]. Oil distributed memory architectures a data parallel programming

strategy is frequently used as a relatively straightforward approach to attain this

performance potential. The data parallel approach can be applied conveniently to

computational problems which involve computations on several large arrays, partic-

ularly if a significant number of these array computations are local. By local, it is

meant that the computations involve data elements with identical or neighboring in-

dices from one or more arrays. With an appropriate data distribution strategy, the

communication costs can be negligible to moderate for these situations. However,

many problems of interest also contain significant global computations, i.e., compu-

tations of an array element which depend on other array elements (of the same array

or similar shaped arrays) with non-local indices. Usually high comnmnication costs

result. Dealing with these global computations is usually the major programming

problem when developing code for parallel computers. Because of the higher cost of

internode over intranode communication the computational savings for a good pro-

gramming strategy are significant. The objective of this paper is to discuss several

programming strategies for a common algorithm, a tridiagonal system solver, which

includes a significant amount of global computations. Performance results from test-

ing two specific strategies will also be presented.

The tridiagonal solver is usually only one component in a realistic application code.

For this study the targeted application code is a Navier-Stokes sinmlation code called

CDNS (described below). Simulation codes of this type are very compatible with

the data parallel programming model. They involve computations on several (5 to

20), large, nmlti-dimensional arrays which have similar shapes. Typically, each array

stores the value of a physical variable for each node of a 3-dimensional computational

grid defined on some control volume of interest. Many of the computations are local in

nature as each array element is computed as a function of the value of other variables

at the same control volmne location (and thus the same coinputational grid-point and

array location). However due to non-local physics or the need for a more accurate

algorithm, these simulation codes contain some global computations.

2 Description of CDNS

CDNS (Compressible Direct Navier-Stokes Simulation code) is an explicit, finite-

difference code developed at NASA Langley Research Center by the second author

to study 3-D compressible turbulence [3]. This code solves the full Navier-Stokes

equations using constant viscosity and Prandtl number. Spatial derivatives are calcu-



lated usinga sixth-order, compactschemewhich requiresthe solutionof a tridiagonal
matrix systemof equations [8]. Time discretization is basedon a low-storage,third-
order, Runga-Kutta scheme.The codeuses14three-dimensionalarrays. For 432grid
points in eachdimension,eacharraycontains81megawordsand the 14arraysrequire
1130megawords.This constitutes roughly 90%of tile total memory requirementof
the code. These14arrays require2.6 megawordsper nodewhen distributed on 432
nodes. For comparison,a 128grid-point problem would require 2.1 megawordsper
array and a total of 29megawords.

CDNS computesthe primitive variables--velocity vector, density and pressure
(stored in 5 of the 14arrays) for a 3-D control volume. A computationalgrid with the
samenumberof grid points in eachdimensionand equalspacingbetweengrid points
is usedto identify the fluid volume. Periodicboundary conditionsareassumedat the
edgesof the fluid volume. After initializing the primitive variablearrayswith a zero-
mean, steady-statebut turbulent flow field, the codemarchesforward in time with
small time stepsto simulate the decayof the turbulent motion. Updating of the flow
variablesis accomplishedby computing the residualsof the Navier-Stokesequations
which are then usedto estimate the time derivatives. The intermediate calculations

are all local-type computations except for the computation of the spatial derivatives.

This exception is important since the spatial derivative calculations depend on the

solution of a tridiagonal system and account for 70% of the entire operation count.

While some of the derivative calculations are local in nature, most are of the partial

global type. By partial it is meant that only one row or column of a 3-dimensional

array is involved in a global calculation, not all the elements of the array. This

row or column is the input and solution vector(r and s) for the tridiagonal system

(Figure 1 and Table 1) and will be referred to as the dependent dimension. The

other two dimensions of the 3-D arrays are merged to form a set of multiple solution

vectors which can be solved simultaneously and will be referred to as the independent

dimensions. This multiple set of problems is the source of the parallelism used to speed

up the tridiagonal solver.

For CDNS an equal number of derivatives are needed in each direction. While

the operation count is the same for computing the derivatives in each direction, the

cost (in terms of time) can vary depending on the choice of data distribution and

algorithm. Specifically, if all the elements of one dimension of a multi-dimensional

array reside on the same node, the standard Gaussian elimination algorithm can be

used in that direction and the resulting load-balanced, no communication code gives

maximum parallel performance. However if that dimension is distributed, internode

communications increase the cost for computing derivatives in that direction.
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Equation(s) to solve:

A s = r (single system of equations)

A S = R (multiple systems of equations)

Variable definitions:

A - periodic tridiagonal matrix

s - solution vector for single system

S - set of solution vectors (each column holds one s-vector)

r - input vector for single system

R - set of input vectors (each column holds one r-vector)

3

Table 1: Definitions for tridiagonal systeln of equations

Tridiagonal Solver

3.1 Base problem

A periodic tridiagonal linear system of equations is pictured in Figure 1. Matrix

A contains zeros in all elements except the 3 diagonal rows marked by solid lines.

The uppermost, right-most element and the lowermost, left-most element are also

nonzero. Tile most common algorithm to solve a linear system for one right-hand

side or one r-vector, Gaussian elimination, contains little potential for parallelism

and more sophisticated (and usually more expensive) algorithms are needed to solve a

single right-hand side system in parallel. However, the need to solve multiple columns

of an R-array for the same A-matrix results in a problem which is more amenable to

an efficient parallel implementation. Recalling the discussion in the section describing

CDNS, the "other two dimensions of the 3-D arrays" will map to the independent

or /-dimension (Figure 1) to form a problem with an R-array as the right-hand side

rather than just a single solution r-vector. The dependent dimension (the direction

of the desired derivative) maps to the j-dimension of the R-array. Whether this

mapping of the 3-D array to the R-array actually requires data motion depends on

the actual computer architecture, compiler, and algorithm. To conserve memory the

same storage area is used typically for both the solution (5') and the input (R) of the

system.

If the/-dimension of S or R is distributed and the j-dimension is not (Figure 2),

then the solution for the piece of S on each node is completely self-contained and a

standard sequential algorithm can be used. If the j-dimension is distributed, then a

tridiagonal algorithm is necessary which includes internode communication. While



both situations generallyoccur in a codethat solvesa tridiagonal systemin all three
directionsof a 3-D data set, the thrust of the algorithm developmentin this section
is for the casewheretile dependentdimensionis distributed.

Tile pseudo-codeshown in Figure 3 will be used to demonstratethe concepts
neededto implement a tridiagonal solver in parallel. In this figure the b-array cor-

responds to any one of tile diagonals of matrix A. ,5'(i,j) is used to store both ,5'

and R as previously discussed. This code segment, which is typical of the loops in a

tridiagonal solver on a vector based architecture, computes each step of a recursive

problem (j do-loop) for all the multiple problems (i do-loop) before preceding to the

next j-step. This recursion is what makes the computations global since the values

computed in the j-th step depend on all the previous steps.

In the algorithms discussed in this section, it is assumed that only one dimen-

sion is distributed on NP nodes. The extension to the case of nmltiple distributed

dimensions is straightforward since the additional distributed ditnensions are always

associated with the independent dimension and can be treated as multiple sets of

problems of either type shown in Figure 2.

3.2 Simple algorithms

If tile independent dimension is targeted for distribution, then the generation of par-

allel code is straightforward. The sample code in Figure 3 is transformed in Figure 4

The/-loop is stripmined into the same number of strips as nodes (NP) creating an

is-loop and an /p-loop. A dependency analysis shows that the/s-loop can be moved

outside the j-loop. Tlle code for each pass of the /s-loop operates on independent

subsets of the S(i,j). The work in each pass of the/s-loop and the appropriate subset

of the ,_g(i,j) can be distributed to the NP nodes and load-balanced parallelism with

no communication results. Note that tile b-array must be replicated on all nodes.

Targeting the dependent dimension for distribution is more complicated and is

the focus of the remainder of this section. An analogous approach to the independent

dimension strategy is shown in Figures 5, 6 and 7 . Here the j-loop is stripmined and

the appropriate code and data distributed. Since data needed to compute on node

n must first be computed on node n - 1, only one node at a time can compute and

no parallelism is achieved. In developing the parallel code, the jp = 1 pass must be

peeled off and explicitly recoded to initialize ft(i, O) = ,gO(i) via a message from the

preceding node. The message to receive the new data has to wait on tile completion

of the work on the preceding node before the data is sent. A straightforward insertion

of message passing thus enforces the correct data dependency without any explicit

synchronization. Clearly, it is naive to expect efficient parallelization of a dependent

dimension to proceed so simply.



Definition of sizes:

parameter (JD = "dependent dimension")

parameter (ID = "independent dimension")

parameter (NP = "number of processors")

C., , _, , °o,,,,,,.,,,,,**,, °,,. o*., °.°o,o.o, ....... • • • I

dimension b(JD), S(ID,JD)

do 20 j=2,JD

do I0 i=l,ID

S(i,j) = S(i,j) + b(j)*S(i,j-l)

i0 continue

20 continue

C,,,,,,,,,,,*,.,,.,.,_,,,°0,,,,,,*,*.,,°*,,.,,, ..... I

Figure 3: Base loop representing typical code in the tridiagonal solver

3.3 Chained algorithm

To develop a load-balanced code for a distributed j-dimension, one can try various

stripmining strategies. Figure 8 gives an overall picture of a load-balanced strategy.

The independent dimension is split into NP sets of problems and each set is started

oll a separate node. The algorithm is designed so that the solution of each prob-

lena set follows the other sets across all the nodes in a chained fashion. Thus each

problem set has access to its data which is distributed across all ttle nodes, yet con>

plete load-balancing is achieved. The generation of such an algorithm call be messy

however. In the following development a series of transformation steps are outlined

which convert a sequential algorithm into a balanced, parallel algorithm. Each step

is very simple--most are common transformations used in compiler pre-processors.

These transformations could be implemented in such a pre-processor, albeit under

user control via directives, providing a reasonably straightforward way of generating

a parallel code.

The transformation of the sequential algorithm proceeds as follows. The pseudo-

code in Figure 3 is transformed to demonstrate the concepts.

• First, both the i and the j index are stripmined (Figure 9). Stripmining in j

is necessary if the algorithm is to be used for data which is distributed in j.

The stripmining in i is necessary because this is the source of any potential

load-balancing.



c... Sequential code transformation ................ I

C

c ISN = number of processors

c ISD = number of i-elements per processor

C

parameter (ISN = NP; ISD = ID/NP)

dimension b(JD), S(ID,JD)

do 30 is=l,ISN

do 20 j=2,ffD

do I0 ip=I,ISD

i=ISD*(is-l) + ip

S(i,j) = S(i,j) + b(j)*S(i,j-l)

i0 continue

20 continue

30 continue

c... Parallel code ................................. I

parameter (ISD = ID/NP)

dimension b(JD), S(ISD,JD)

10

20

do 20 j=2,JD

do 10 ip=I,ISD

S(ip,3) = S(ip,j) + D(j)*S(ip,j-1)

continue

continue

Figure 4: Sequential code transformation and parallelization of code distributed in

the independent dimension
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Figure 5: Sketch of naive algorithm

Stripmining:

npi = number of elements per strip

is = index of strip

ip = index of element within a strip

i = is * npi + ip

Base indices:

i = data & algorithm index - "independent" direction

j = data index - "dependent" direction

k = algorithm index - "dependent" direction

Strip indices:

is = data & algorithm strip index - "independent" direction

js = data strip index - "dependent" direction

ks = algorithm strip index - "dependent" direction

Table 2: Definition of strip indices



c... Sequential code transformation ................ i

c

c 3SN = number of processors

c JSD = number of j-elements per processor

c

parameter (JSN = NP; JSD = JD/NP)

dimension b(JD), S(ID,JD)

js=l

do 2 jp=2,JSD

j=JSD*(js-I) + jp

do I i=l,ID

S(i,j) = S(i,j) + b(3)*S(i,j-l)

I continue

2 continue

do 30 js=2,JSN

do 20 Jp=I,JSD

j=JSD*(js-I) + jp

do i0 i=l,ID

S(i,j) = S(i,j) + b(j)*S(i,J-l)

i0 continue

20 continue

30 continue

Co,.ooo. .... .....°..o,o.,.o.ooo,oo.o0o.o,°.,,.., .... I

Figure 6: Sequential code transformation of code distributed in the dependent di-

mension-naive algorithnl



c... Parallel code ................................. I

jn = node identifier

parameter (JSD = JD/NP)

dimension b(JSD), S(ID,JSD), S0(ID)

jS = jn

if (is .he. I) then

jp=l

get [ from: S(i,JSD) on processor n-i

after loop 20

S0(i) on jn (this processor) ]to:

do I i=l,ID

S(i,jp) = S(i,jp) + b(jp)*SO(i)

continue

end if

do 20 jp=2,JSD

do i0 i=l,ID

S(i,jp) =S(i,jp) + b(jp)*S(i,jp-l)

i0 continue

20 continue

C..,,.o,.°,°o°°°o°o,o,o,oo, ......................... I

Figure 7: Parallelization of code distributed in the dependent dimension--naive al-

gorithm

lO



set = 1 2 3 4
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Figure 8: Sketch of chained algorithm

i Once strlpmined, the next step in tile algorithm development is to replace the

is-index with 2 indices (Figure 10 and Table 2). Tile original js-index serves 2

functions:

1. indexing the progress of the algorithm (new index is ks)

2. indexing tile array to select the correct data at each step (new index is js).

The inner part of the stripmined j-index, the jp-index, is not required to be

split. Parallelization is achieved by rearranging the strips (indexed by js) rather

than the elements of a strip (index by jp). Initially, this is only a change in

name of tile indices, so the statement, js = ks, must be added to tile code.

i For each set of columns with the same is-index (which defines an independent

subproblem), the algorithm does not have to start on the node js = 1. The

top group of rows (first js-strip) of the system could be moved to the bottom

as shown in Figure 11 . After re-ordering the columns, the resulting system

of equations has tile same periodic, trldiagonal form as the original system.

However, the first row of the ,_gor R-array for this modified system becomes is

a member of tile js = 2 strip. The is = 1 subset of problems can be solved with

the original system and tile is = 2 subset solved with this modified system.

Tile modified A matrix may result in a different factorization, but the modified

system is still solving the original problem and will give the same answers within

numerical accuracy limits. Other modified systems can be defined for the other

/s-strips. The important point is that tile data in the ,5' or R-array does not have

to be moved to solve one of the modified problems. The solution of a modified

problem begins at an interior value of the js-index which is the desired goal.

11



c... Sequential code transformation ................ I

c stripmine code

parameter (ISN = NP; ISD = ID/NP)

parameter (JSN = NP; JSD = JD/NP)

dimension b(JD), S(ID,JD)

js=1

do 2 jp=2,JSD

j=JSD*(js-I) + jp

do i is=l,ISN

do I ip=l,ISD

i=ISD*(is-l) + ip

S(i,j) = S(i,3) + b(j)*S(i,j-l)

1 continue

2 continue

do 20 js=2,JSN

do 20 jp=I,JSD

j=JSD*(js-1) + jp

do I0 is=l,ISN

do i0 ip=l,ISD

i=ISD*(is-l) + ip

S(i,J) = S(i,j) + b(j)*S(i,j-l)

I0 continue

20 continue

C_°°.o°,.,°......,,,.,,.....,*.°,o°°,.°o,.,,,,°''o'°l

Figure 9: (Jhained algorithm code development - sequential transformation step 1
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c... Sequential code transformation ................ [

c separate data(is) & algorithm(ks) index:

parameter (ISN = NP; ISD = ID/NP)

parameter (JSN = NP; JSD = JD/NP)

dimension b(JD), S(ID,JD)

ks=l

do 2 jp=2,JSD

js = ks

j=JSD*(js-i) + jp

do 1 is=l,ISN

do 1 ip=I,ISD

i=ISD*(is-1) + ip

S(i,j) = S(i,j) + b(j)*S(i,j-i)

I continue

2 continue

do 20 ks=2,JSN

do 20 jp=I,JSD

js = ks

j=JSD*(js-I) + jp

do I0 is=l,ISN

do i0 ip=l,ISD

i=ISD*(is-l) + ip

S(i,j) = S(i,j) + b(j)*S(i,j-l)

i0 continue

20 continue

C ........................................ ,,o.,,,.,.°I

Figure 10: Chained algorithm code development- sequential transformation step 2

1:3
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Figure l 1: Chained algorithm code development - reorder rows of A for is=2 strip

The above algorithm changes along with several other system re-orderings can

be achieved by replacing the js = ks statement in Figure 10 with a more general

function, js = P(ks, is), as shown in Figure 12. P(ks, is) specifies the various

permutations of the js-index with respect to the ks-index for each/s-strip. To

recover the original code, Equation 1 is used to define P(ks, is). One particular

permutation which load-balances the algorithm using the approach outlined in

the preceding paragraph is given by Equation 2.

P(ks,is) = ks (1)

P(ks, is) = rood(ks + is - 2, NP) + 1 (2)

Replacing Equation 1 with Equation 2 can be viewed as a code transformation

that rotates the algorithm index with respect to the data index (Figure 13).

After such a transformation the index relationships between

- is, the index defining the subsets or strips of independent problems,

- js, the index defining which strip of S(i,j) is being used, and

- ks, the index which inarches the algorithm in the dependent dimension

would be as shown in Figure 14.

14



• The problemwith the codein Figure 13is that there is noeasyway to distribute
the code and obtain parallel execution. If the codein Figure 13 is replicated
on eachnode, the computationof ,¢(i,j) inside tile js-loop should only be done

when js = jn, where jn is a unique identifier assigned to each node and has

the same range as js. In other words, the code executing on each node can only

use data that resides oil that node (except for starting values for tile recursion).

This strategy would not be an efficient solution, since extra loop passes would

be executed with only one of these passes doing ally "real" computations.

Alternatively the is-index in the do-loop could be replaced by the js-index and

js = P(is, ks) replaced with is = Pi(ks,js) where Pi is defined by Equation 3.

Pi(ks,js) = mod(js - ks, NP) + I (3)

This function Iriaintains the same relationship between is, js and ks as Equa-

tion 2. This index swapping transformation is shown in Figure 15. From Fig-

ure 14, it can be seen that for a fixed value of ks, js is just a permutation

of is, therefore index swapping maintains the load-balancing potential of the

algorithm.

• The js-loop can now be moved to the outside of each loop nest based on a

dependency analysis. (Figure 16 )

• Tile actual parallelization of the code now entails replacing the js-loop with

js = jn and assigning the code inside the js-loop for execution on each node.

(Figure 17)

Tlle resulting parallel algorithm is shown in Figure 17. Note that it is completely

load balanced, contains the same total operation count as the original algorithm and

can easily be mapped to a node network layout to obtain nearest neighbor communi-

cation. The communication costs are relatively small, since only two groups of data

are actually moved every time the algorithm crosses to the next node for each is-strip.

Each group is roughly the size of one "surface" of the 3-D array section located on

each node. The communication cost will be discussed in more detail later in the pa-

per. For the periodic system discussed here, the data is mapped to the nodes for the

rotated algorithm in a straightforward, data-parallel manner; i.e., no complex data

mapping is needed. Therefore, the derivative computations in the non-distributed

dimensions are not affected. Also, the sample code used to demonstrate the trans-

formations makes only one pass through the data. The extensions needed for the

backward pass in an actual solver are straightforward.

3.4 Transpose algorithm

Tile algorithm discussed in the previous section, while having many positive charac-

teristics, still has the drawback of complexity. A simple strategy is:

15



c... Sequential code transformation ................ I

c make data index (is) an explicit mapping function

parameter (ISN = NP; ISD = ID/NP)

parameter (JSN = NP; JSD = JD/NP)

dimension b(JD), S(ID,JD), P(ISN,JSN)

ks=l

do 2 jp=2,JSD

do 1 is=l,ISN

j s=P(is,ks)

j=JSD*(js-1) + jp

do I ip=I,ISD

i=ISD*(is-l) + ip

S(i,j) = S(i,j) + b(j)*S(i,j-l)

I continue

2 continue

do 20 ks=2,JSN

do 20 jp=I,JSD

do I0 is=l,ISN

js=P(is,ks)

j=JSD*(js-I) + jp

do i0 ip=I,ISD

i=ISD*(is-l) + ip

S(i,j) = S(i,j) + b(j)*S(i,j-l)

I0 continue

20 continue

C°.oo,.o,o,,o°o°.,o,.,.°..o..,,,°oo...°o..,o,o ..... oi

Figure 12: Chained algorithm code development - sequential transformation step 3
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c... Sequential code transformation ................ I

c rotate map function in recursive dimension

parameter (ISN = NP; ISD = ID/NP)

parameter (JSN = NP; JSD = JD/NP)

dimension b(JD), S(ID,JD), P(ISN,JSN)

do i00 ks=l,JSN

do 100 is=l,ISN

js = ks + (is-l)

if (js .gt. NP) js = js - NP

P(is,ks) = js

i00 continue

ks=l

do 2 3p=2,JSD

do 1 is=l,ISN

js=P(is,ks)

j=JSm*(js-1) + 3p

do 1 ip=I,ISD

i=ISD*(is-1) + ip

S(i,j) = S(i,j) + b(j)*S(i,j-l)

i continue

2 continue

do 20 ks=2,JSN

do 20 jp=i,JSD

do 10 is=i,ISN

j s=P(is,ks)

j=JSD*(js-i) + jp

do i0 ip=I,ISD

i=ISD*(is-1) + ip

S(i,j) = S(i,j) + b(j)*S(i,j-l)

iO continue

20 continue

C°.o ..... "°'°'°°'°'°°*''***°''°'°°°'''*''''''o''o'o-I

Figure 13: Chained algorithm code development- sequential transformation step 4

17



is = 1 2

!

I

I

ks= ! 4

____ .............. .

2 I

...... L. .....

3 2

.......... t" .....

I

I

4 _ 3
I

i z
! I

I I

I I

3 4

I !

3 _ z

!

I

4 I 3

....... t- ......

1 4

...... It- ..........

!

2 J 1
!

!

i
I

I

i

jS = 1

Figure 14: Chained algorittml code development- index relationships after rotation

transformation

• to rearrange tile data globally using internode communications so that the data

for each global calculation is all on one node,

• to use a sequential algorithm to make those calculations, and

• to return the data to its original distribution.

A global transpose can be used to accomplish the first and last items to implement

such a strategy for a tridiagonal solver.

The implementation proceeds as follows. Each problem (one column of an R-

array) has data distributed on each node in (js,/.@blocks with the same/s-index.

All the blocks with the same/s-index can be moved to the same node via a global

transpose as pictured in Figure 18. With all the data for each problem now on

the same node, a sequential algorithm can be used. If a complete transpose, such

as implied by Figure 19, is desired, an on-node or local transpose of the data within

each (js, is)-block is also needed. This on-node data motion sometimes can be hidden

behind the global data motion. The complete transpose frequently will give better

on-node performance than just a global transpose.

Bohkari[1] has discussed several algorithms to implement a global transpose. On

a hypercube node architecture, the choice of algorithms is very important since al-

gorithms that avoid llnk contention can be written. On a mesh architecture, ]ink
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c... Sequential code transformation ................ I

c invert map function

parameter (ISN = NP; ISD = ID/NP)

parameter (JSN = NP; JSD = JD/NP)

dimension b(JD), S(ID,JD), PI(JSN,JSN)

do 100 js=I,JSN

do I00 ks=l,JSN

is = js - ks +i

if (is .le. 0) is = is + NP

PI(ks,js) = is

i00 continue

ks=1

do 2 jp=2,JSD

do i js=I,JSN

is=PI (ks,js)

j=JSD*(js-I) + jp

do I ip=l,ISD

i=ISD*(is-l) + ip

S(i,j) = S(i,j) + b(j)*S(i,j-l)

i continue

2 continue

do 20 ks=2,JSN

do 20 jp=I,JSD

do I0 js=I,JSN

is=Pl(ks,js)

j=JSD*(js-I) + jp

do I0 ip=l,ISD

i=ISD*(is-l) + ip

S(i,j) = S(i,j) + b(j)*S(i,j-l)

I0 continue

20 continue

C.. ............ "'o'''''''o,'°°,,,,,,,*,*****,,¢,,,,,I

Figure 15: Chained algorithm code development- sequential transformation step 5
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c... Sequential code transformation ................ I

c make 3s-loop the outer loop

parameter (ISN = NP; ISD = ID/NP)

parameter (JSN = NP; JSD = JD/NP)

dimension b(JD), S(ID,JD), PI(JSN,JSN)

do I00 js=l,JSN

do I00 ks=l,JSN

is = is - ks +i

if (is .It. 0) is = is + NP

PI(ks,js) = is

i00 continue

ks=l

do I js=I,JSN

do 2 jp=2,JSD

is=Pl(ks,js)

3=JSD*(js-I) + ]p

do i ip=I,ISD

i=ISD*(is-l) + ip

S(i,3) = S(i,J) + b(j)*S(i,j-l)

I continue

2 continue

3 continue

do 30 js=l,JSN

do 20 ks=2,JSN

do 20 jp=I,JSD

is=PI(ks,js)

j=JSm*(js-i) + jp

do iO ip=i,ISD

i=ISD*(is-l) + ip

S(i,j) = S(i,j) + b(j)*S(i,j-i)

iO continue

20 continue

30 continue

C°,,,o,o,,.,.,,***..,,°.*o****_,,.,.,o,,°oo*°°o ..... I

Figure 16: Chained algorithm code development- sequential transformation step 6
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c... Parallel code (processors i to NP) ............ I

parameter (ISN = NP; ISD = ID/NP; JSN = NP; JSD = JD/NP)

dimension b(JSD), S(ID,JSD), S0(ID), PI(JSN)

js = jn ( = node identifier )

do i00 ks=l,JSN

is = js - ks +i

if (is .It. O) is = is + NP

PI(ks) = is

i00 continue

ks=l

do 1 js=I,JSN

do 1 jp=2,JSD

is=PI(ks)

j=JSD*(js-1) + jp

do I ip=i,ISD

i=ISD*(is-l) + ip

S(i,j) = S(i,j) + b(j)*S(i,j-1)

i continue

2i

do 30 ks=2,JSN

jp=l

send [ from: S(i,JSD) on processor n-I after loop 20

to: SO(i) on pro-_ssor n (local)]

do 21 ip=I,ISD

is=PI(ks)

i=ISD*(is-l) + ip

S(i,jp) = S(i,jp) + b(jp)*SO(i)

continue

do 20 jp=2,JSD

is=PI(ks)

do 20 ip=I,ISD

i=ISD*(is-l) + ip

S(i,jp) = S(i,jp) + b(jp)*S(i,jp-l)

20 continue

30 continue

C.oo,,oo. .......... °,,o,,o. ......... o,,,..o, ...... °.I

Figure 17: Chained algorithm code development - parallel transformation step 7
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Figure 18: Transpose algorithm code development - global transpose sketch

contention problems make tlle determination of an improved algorithm tedious; more-

over, any performance improvements are usually small. To date the XOR algorithm,

which is generally best for a hypercube architecture, is also one of the better choices

for a mesh. This algorithm was used for the timing test reported herein. The com-

munication costs are further discussed in the next section.

4 Target data distributions

In developing a strategy to adapt a code like CDNS to a distributed memory computer

a major decision is how to subdivide the large arrays. It is natural to equally partition

either one, two or three dimensions of each array and then distribute each array

identically. The choice of how many dimensions to partition is then the main issue.

The discussion in this paper assumes that the number of array' elements in each

dimension is evenly divisible by the number of nodes allocated to that dimension.

The performance results reported herein are all for this evenly divisible case. The

conclusions of this study regarding algorithm strategy should also apply to the more

general case.

Simple models to estimate tile computation and data communication times are

more difficult on parallel/distributed memory computers than on other typically used

architectures. Link contention can be very difficult to predict even when a code does

not share tile node network with other codes. Overlapping com,nunications with on-

22



node

0

SorR

Beforetranspose

node

0

2

3

After transpose

Figure 19: Transposealgorithm codedevelopment- completetransposesketch

23



/
!

(a) 1-D

3 I

(b) 2-D

(c) 3-D

Figure 20: Data distributions

node computations further complicates the picture. Nevertheless, some insight can

be gained from such models.

The model estimates herein include tile communication cost for the formation

of tile input array and for the solution of the tridiagonal system. Figure 20 shows

the three basic choices for distributing the 3-dimensional arrays. For any of the

distribution methods and for any of the three directions of the derivatives, the overall

problem can be formulated into a set of problems of either of the two types shown in

Figure 2.

Two approaches based on the above tridiagonal algorithms were considered to

solve the problem of computing a derivative in each of the three directions with good

overall efficiency. One approach is based on the chained algorithna which is used

only in the directions where tlle data is distributed. For the directions that are not

distributed tile sequential algorithm is used and the communication costs are zero.

Communication costs for the chained algorithm are estimated in Appendix A. Tile

estimates for each of the three possible data distributions are given in Table 3. The

estilnates are for the sum of the costs of computing a derivative in each of the three

directions.
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variable 1-D 2-D 3-D

n N N 1/2 N 1/3

m 4N 2 8N 3/2 12N 4/3

s L'2/N L2/N L2/N
t 4NL 2 8N1/2L2 12N1/aL 2

f 4N/L 8N_/2/L 12N'/a/L

Table 3: Comnmnication estimates for tile chained algorithm

L = number of grid points in each direction

A = size of one 3-D array = L a

N = total mnnl)er of nodes

n = number of nodes in each dimension

m = total number of messages

s = size of one message

t = total size of data moved

f = fraction of one array moved = t/A

For tile chained algorithm both the number of messages and the amount of data

moved decrease as the number of partitioned dimensions increases. Thus, higher di-

mension partitioning is preferable. However, since the target architecture, the Touch-

stone Delta [6], for this current work is a 2-D node mesh, the 2-D partitioning should

be better because tile communication will then be predominantly nearest-neighbor

between tile physical nodes. For architectures where 3-D partitioning maps without

link contention penalties, then the higher dimension partitioning should give better

performance.

The second approach is to globally transpose the entire S or R array for those

directions were the dependent dimension is distx'ibuted. The communication costs for

this case are given in Table 4. The development of these estimates is described in

Appendix A.

While the number of messages is smaller for the 3-D partitioning, the total amount

of data moved is approximately 3 times that for the 1-D partitioning. Since the

amount of data is large (note that message sizes are proportional to the array "vol-

ume") the total amount of data moved should be more significant than tile overhead

costs (represented by the number of messages). Therefore, 1-D partitioning appears

to be the better choice for an algorithm involving transposes.

This simple analysis does not determine whether the transpose strategy or the
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variable 1-D 2-D 3-D

n N N 1/2 N 1/3

m 2N 2 4N z/2 6N 4/3

s L3/N 2 LZ/(N 3/2) L3/(N 4/3)

t 2L 3 4L z 6L a

f 2 4 6

Table 4: Comnmnication estimates for the transpose algoritlun

distributed tridiagonal solver strategy is better. Thus the I-D case for the transpose

strategy and ttle 2-D case for the distributed solver strategy were both implemented

and tested. The performance behavior of the two algorithms was determined by

experiment and is reported later in this paper.

While the above total communication statistics give some estimate of the com-

munication costs, the effective communication statistics defined by Equations 4 and

5 would give a better measure. The factor e in these equations is a parallel efficiency

which is a function of ttle amount of parallelism available, load-balancing and link

contention.

m_ = m/e (4)

(5)

e = N implies that tlle maximum available parallel communication is achieved,

while e = 1 implies that the nodes send a set of messages sequentially. Link con-

tention and load-balancing can be difficult to quantify so their effects must usually

be discussed qualitatively. Neither the chained nor the transpose algorithm should

loose efficiency due to load-balancing problems. While the transpose algorithm has no

link-contention problems on a hypercube architecture, it can have significant problems

on a mesh architecture. Since the chained algorithm uses nearest neighbor communi-

cations, link contention is not a problem. Therefore the communication costs for the

chained algorithm should be lower than for the transpose approach.

5 Selection of specific algorithm for testing

From the preceding discussion, it is clear that several tradeoffs exist between the

different algorithms. The transpose approach is the most straightforward, since the
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variable 1-D 2-D 3-D 2D/1D

m 2 2 2 4/(N'/2)

s niL niL n/L NIL

t 2niL 2n/L 2niL 4(N'/2)/L

Table 5: Ratio of communication statistics: balanced algorithm / transpose algorithm

sequential algorithm can be used with only a few modifications. The difficulties of

the distributed memory architecture are localized to a global data transpose module

which can be made available as a routine or template in a library. This approach can

be used for a very wide range of applications. However, the large data communication

costs of a global transpose leaves much room for improvement. The ratio of message

sizes of the 2 algorithms in Table 5 shows that the chained algorithm requires less

total data transferred, although the number of messages is only slightly higher. The

parallel efficiency effects also favor the chained algorithm. However, the coding of

these parallel algorithms is more difficult. Quantitative performance comparisons of

these two approaches as well as code development experience are needed to better

evaluate the trade-off between programming time and execution time.

The transpose algorithm was implemented for the case where one dimension of

the 3-dimensional arrays is distributed. This is referred to as the SLAB version. The

three array dimensions (indexed by i,j, k ) correspond to the three physical directions

(x,y,z). The chosen dimension for distributing was the second (j or y). For on-node

performance reasons (mainly better vectorization) the tridiagonal solver algorithm is

written so that the third dimension is the solution vector dimension. By letting the z-

direction reside on-node, no data motion is needed for solutions in the z-direction. For

solutions in the y-direction, the local data motion to make y the last dimension can

be overlapped with some of the global data motion needed to get all the distributed

y-strips on the same node. Choosing either x or y (but not z) for the distributed

dimensions allows for this overlap. In this case the choice of distributing y made

the code development slightly easier due to the style of the original code and to the

specifics of some analysis routines which were part of the code but are not discussed

herein. Tlfis overlap potential cannot be fully realized on the Touchstone Delta, but

this capability is part of the design for some newer architectures.

A 2-dimensional distribution strategy was chosen for the chained algorithm since

the target computer, the Touchstone Delta, has a 2-dimensional node mesh. x and y

were chosen as the distributed dimensions for the reasons mentioned in the discussion

of the transpose algorithm. This version is referred to as the TUBE version.

27



6 Timing results on the Touchstone Delta

6.1 Test description

A series of timing tests were made on the derivative kernel for the CDNS code for

both the TUBE and SLAB versions. Tile derivative kernel computes each of tile three

spatial derivatives of a scalar function defined on a 3-dimensional computational grid.

The derivative in each of the 3 directions was timed. Any necessary data movement

to change the data from ttle base memory layout to a layout specific to a particular

derivative is included in tile timing of that derivative. The timings only include

the forward and backward substitution phase of tile tridiagonal solver. Since the

tridiagonal matrix does not vary during a run, the factorization is executed once.

Both single direction timings and the total time to compute the derivative in all

3 directions are presented. These 3-direction timings give a good measure of how

the kernel performs in the CDNS code since the code requires tile same number of

derivative calculations in each direction. In general, CDNS runs about 5% faster than

the kernel. This is because the other operations in the simulation code are mostly

of tile local type. CDNS also includes some input/output and analysis code which

executes slower but less frequently.

Most of the timing results will be presented in Mflops. Assuming the same nmnber

of grid points in each direction, operation counts for the derivative kernel are:

0 = 14L 3- 12L 2

P = O/(TIO a) (6)

where_

L = number of grid points in each dimension

O = number of floating point operations using the sequential,

periodic Oaussian elimination algorithm

T = measured execution time in seconds

P = performance measure in units of Mflops.

It should also be noted that the entire code is written in highly optimized Fortran

code. The Mflop rates for derivatives in the z-direction, which contain no internode

communications, are in the 15-20 range which is high for Fortran code which does

not take partlcular advantage of tile cache. As an aside, it was found to be difficult

to write assembler code that significantly exceeds tile Fortran compiler performance

for the algorithms under investigation.
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6.2 Performance measures

In evaluating an algorithm, one is interested in both its absolute performance as well

as its scalability[9, 10]. An algorithm which has good or best performance over a

large range of nodes is obviously desirable. Frequently, a performance measure such

as Mflops is plotted versus number of nodes for a fixed problem size (a fixed grid size

for CDNS and similar codes). The closeness of this curve to the linear extensions

of the single node performance, Equation 7, is the basis of many conclusions about

scalability.

G = P,N (7)

where,

N = number of nodes

P1 = single node performance measure

Pg = multi-node performance goal.

The first problem with this is that one is not usually interested in running a small

problem on a large number nodes. One is typically interested in running a larger

problem as the number of nodes increases, although there are exceptions. Most

codes will have better performance per node when they are run on the minimum

number of nodes possible. Maximizing an individual code's performance translates

into improved overall system throughput. Therefore, a more useful measure is the

performance versus nodes at a fixed memory utilization. In this study, for each set

of tests which were run on the same number of nodes, linear interpolation was used

to estimate tile performance when tile 14 major arrays used in CDNS filled 90% of

each node's memory. The curves marked "90% mere" are quadratic least squares fits

through these 90% estimate points. Since the test kernel for the derivative uses fewer

than tile 14 arrays needed by CDNS, some of the test data is for CDNS equivalent

problem sizes greater than 100%.

In addition, the 90% measure eliminates some on-node effects that may not be

desired in a scalability measure. The Touchstone Delta uses an Intel i860 processor

for which the Fortran compiler generates a form of vector code [7]. The performance

of the resulting vector code is dependent on vector length for vectors up to several

hundred in size. As the number of nodes increases for a fixed problem size, the vector

lengths can become shorter. Including this effect in the scalability measure biases the

result. The 90% measure does not guarantee the elimination of vector performance

variations or other on-node effects, but it should reduce these effects.

Another problem relates to the direct comparison of data to Equation 7. The

comparison of multi-node tilnings to single node timings is not particularly relevant.
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Figure 21: TUBE kernel performance - rate per node for all directions

Many cases which are currently run on a large number of nodes cannot be run on a

single node• The choice of what to use for tile single node performance is not clear -

a single computation for a smaller problem, the extrapolation of the very smallest

number of nodes possible to a single node, or tile single node performance on another

machine with larger memory. The compariso_i of multi-node timings to any of the

above choices can be justified to gain insight into soine performance issues, but they

do not seem to give the best overall performance picture. A better measure is the

performance per node versus number of nodes. A constant value of the performance

per node over a range of nodes implies scalability for that range. An algorithm may

have several scalability plateaus or constant ranges. In a plot of performance versus

nodes, one generally tries to discern a constant slope region in a set of data and

compare this slope to a single measure of goodness, i.e. Equation 7. If multiple

constant slope regions are observed, a linear curve through that region (Equation 7

with a secondary value of P1) must extend through zero to hnply scalability. All this

information is much easier to ascertain in the performance per node format.

6.3 Results of TUBE algorithm

Figure 21 is a plot of the 3-direction TUBE algorithm performance results• For a fixed

grid size, the performance drop with increasing number of nodes is large. However,

above 250 nodes the scalability suggested by the 90% measure is very good. Clearly,

the algorithm and architecture are most compatible for the larger problem/node sizes•
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The same data is replotted in Figure 22 as Mflops versus nodes. Equation 7 is included

oil the figure with a single node performance of 10 Mflops assumed. It is nearly

impossible to discern in this plot format the scalability plateau between 250 and 500

nodes that was observed in Figure 21.

The data for a derivative in one direction only is also informative. The z-direction

data (Figure 23) is ahnost constant which is expected since there is no internode com-

munication in this part of the algorithm. For a fixed problem size, the performance

drops off as the number of nodes increases. This is an example of the on-node vector

length effect cited above. The x- and y-direction data (Figures 24 and 25) look similar

to the 3-direction data. This is as expected since the slower performance sections of

an algorithm will dominate its overall performance character. While the node grid

was selected as close to square as possible, the number of nodes in the x-direction was

sometimes larger than that in the y-direction. That is why the y-direction perfor-

mance tends to be slightly greater. Otherwise the derivatives in these two directions

are essentially the same--both using the chained parallel algorithm.

6.4 Results of SLAB algorithm

The 3-direction data for the SLAB algorithm is shown in Figure 26. The SLAB

algorithm was run on only a few node/grid combinations because of restrictions due

to the particular transpose algorithm chosen. Since the performance of this algorithm
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was generally lower than the TUBE version, a more flexible transpose algorithm was

not implemented. With the limited data one is not able to determine how well this

algorithm scales for large problems. Since the cost of communication grows like the

"volume" of the arrays as the problem size increases, the scaling should be worst than

that for the TUBE algorithm. For the smallest grids, the SLAB algorithm actually

results in better performance than the TUBE algorithm. This SLAB algorithm also

[lad better performance on a hypercube network as compared to a mesh network.

This is because a transpose can be coded more efficiently on a hypercube where fewer

link contentions generally result.

7 Conclusion

Parallel, distributed memory computing, as compared to sequential and vector com-

puting, generates a larger variety of algorithms that need to be considered. The

different choices also result in a wider range of performance. Understanding imple-

mentation details is also more important, since different implementations of the same

basic algorithm can have even larger differences in performance. It is especially im-

portant when presenting algorithm comparisons to specify sufficient detail so that

any performance comparisons can be fully appreciated and duplicated.

Tile trade-offs between simple, easy-to-implement algorithm strategies (such as

the transpose algorithm) and more complicated strategies (the chained algorithm)

:]3



10.0

7.5

o

_.5.0
o

2.5

Grid

SLAB Kernel Performance _ 32

I 3 directions _ 428

256

tl .....................................tI .....

i i i J I i i ' ' I .... L ,

t00 200 300
nodes

0.0 , , , I , , , , I

0 400 500

288

384

542

90=Y_rnern

rate=lO

Figure 26: SLAB kernel performance - rate per node for all directions

for this current study seem to favor the chained algorithm. Although the improved

performance, including scalability potential, favor this algorithm, the existence of a

straightforward sequential to parallel transformation strategy reduces the disadvan-

tage of being more complicated. If code development tools were available to assist the

user in impleinenting these transformations, the complexity of the final code would

be less of an issue.

The transformation strategy outlined above should be extendible to many other

programming situations. For example, when the tridiagonal matrix to invert is not

periodic, it is possible after a reordering of the elements within the array, to derive

a balanced algorithm similar to the one described here. The price to pay will be

somewhat increased communication costs. If parallel, distributed memory computing

is to become practical in a production code environment, the generation of parallel

code must be done via systematic programming procedures rather than via "creative"

programming. Only when parallel code can be so generated will compilers be able

to efficiently convert sequential-computer style code to parallel-distributed-memory

style code.
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9 Appendix A - Communication Estimates

(lommunication estimates for two algorithms for the C,DNS derivative kernel are

discussed in Section 4 of this paper. The development of those estimates is given in

this appendix.

The derivative kernel was developed to accept a three dimensional array containing

the values of some variable at each node of a three dimensional, uniformly spaced

physical grid. The kernel computes the partial derivatives of that variable using a

6th order, compact, finite-differencing scheme[8]. This results in the need to solve a

tridiagonal system of equations with multiple right-hand sides. The original data is

assumed to have periodic boundary conditions.

The estimates given below are for three calls to the kernel--one requesting a

derivative in each of the three physical directions. As discussed in the previous sec-

tions, a straightforward partitioning strategy is taken. The various strategies evalu-

ated, each assign equally one or more dimensions of the 3-D array to the available

nodes. Estimates are based on the available nodes also being allocated equally to

each distributed dimension. The actual algorithms discussed in this paper are not

limited by this restriction.

9.1 Definitions

L = number of grid points in each dimension

A = size of one 3-D array

N = total number of nodes

n = number of nodes allocated to each distributed dimension

m = total number of messages

s = size of one message

t = total size of data moved

f = fraction of one array moved

A = L 3

f = t/A
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9.2 Chained algorithm

The chained algorithm works as follows:

Tile 3-D array that is passed to the derivative kernel is treated conceptually as

a 2-D array. The dimension of the 3-D array' that corresponds to the direction

for which a derivative is desired is mapped to the dependent dimension of the

2-D conceptual array (R, input or S, output; see Table 1 and Figure 1). The

dependent dimension is the direction of the vectors (input,r and solution,s)

that are solved by the tridiagonal system. The other two dimensions of the 3-D

array map to the second dimension of the 2-D array. It is referred to as the

independent dimension since it indexes the multiple input vectors and multiple

solutions vectors, which can be solved independently of each other.

It is useful to view the 2-D array as stripmined in both dimensions. The strips in

the independent dimension identify groups of vectors that are lumped together

to form an independent sub-problem. The strips in the dependent dimension

correspond to the pieces of the array that are distributed to the various nodes.

See Figure 27. All sub-problems are computationally equivalent and thus any

message estimates can be made for one sub-problem and then multiplied by the

number of sub-problems to get overall estimates.

For the 2-D and 3-D case, the independent dimension is also distributed. Each

of these slices (2-D case, see Figure 29) or tubes (3-D case, see Figure 30),

formed as a result of the independent dimension partioning, are similar to tile

1-D case, where the partitioning is only in the dependent dimensions.

The algorithm for each sub-problem starts on one of the 7z sub-strips and pro-

ceeds in a chained fashion to each of the other sub-strips. This chain must be

completed twice once for the forward and once for the backward pass of the

tridiagonal solver. The algorithm proceeds on each node in a manner similar to

the sequential, Gaussian elimination algorithm[5], but for only the data located

on that node. During a message passing step, the last row of data is passed to

the next node. Because the problem is periodic, a second row of data is also

passed.

n - 1 message passing steps are needed for each pass of tile tridiagonal solverportion

of the algorithm. Two message passing steps are also needed for some preliminary

calculations involving the R-array before tile solver is executed. Combining these

two stages results in ,_ total message passing steps per pass. Several simplifications

are not discussed which only affect lower order terms of the estimates. The chaining

algorithm requires that the number of subproblems equals the number of nodes in

the dependent dimension for a load balanced algorithm to result (see Figure 8). In
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the following subsections,estimatesfor 3 data distributions are made--distributing
the original 3-D array in one, two and threeof its dimensions.
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9.3 Chained algorithm: 1-D partitioning

See Figure 28.

• number of nodes in each distributed dimension

n = N

• compute number of messages

m = 1 di,stributed direction

* n ._ubproblem.s

* 2 pas,se.s(fovwavd & backward)

* n .steps�pass

* 2 rne.s.sage.s/.step

rn ---- 47z2 rtzessaje,s

• compute message size

s = L _ .size of independent dimen._ion

/ rz subproblem _trip_

s = L2/n size of each me.s.sage

• results

m = 4N 2

_ = L2/N

t = 4NL 2

f = 4N/L
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Figure 28: Chained algorithm for a 1-D data distribution
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9.4 Chained algorithm: 2-D partitioning

See Figure 29.

• number of nodes in each distributed dimension

n = N 1/2

• compute number of messages

rn = 2 distributed directions

• n subproblems/slice

• n slices

• 2 pa,sses/subproblem

• n steps�pass

• 2 messages�step

m = 8n a messages

• compute message size

S ----

S

L2/n ,size of slices (independent dimension)

/ n subproblem strips

L2/n 2 size of each message

• results

m = 8N 3/2

.s = L2/N

t = 8N1/2L2

f = 8N1/2/L
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Figure 29: Chained algorithm for a 1-D data distribution
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9.5 Chained algorithm: 3-D partitioning

See Figure 30.

• number of nodes in each distributed dimension

n = N 113

• compute number of messages

m = 3 distributed directions

* n subproblems

* n 2 tubes

* 2 passes/._ubproblem

* n step_/pas_

* 2 messages/step

_z ---- 12n 3 messages

• compute message size

s = L2/n 2 .size of tubes (independent dimension)

/ n subproblem strips

= L2/n 3 .size of each, message

• results

m = 12N 4/3

s = L_/N

t = 12N1/aL 2

f = 12N1/a/L
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Figure 30: Chained algorithm for a 1-D data distribution
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9.6 Transpose algorithm

The transpose algorithnl works as follows:

The conceptual mapping between the 3-D array" and tile R or S array is similar

to tile chained algorithm.

Assuming that the j-dimension in Figure 18 is tile dependent dimension, the

R array must be transposed so that each j-vector resides on a single node.

Principally, this involves the swapping of blocks of data as shown in Figure 18

which is referred to as a global transpose. For on-node performance reasons,

each block is also transposed to generate a complete transpose. The on-node

data motion is not included in these estimates since it can partially be hidden

behind the inter-node communications.

Once the input (R-array) is transposed, a sequential solver algorithm is used to

generate the output (S array). The S-array must then be transposed back to

the original data distribution.

In tlle following subsections, estimates for 3 data distributions are made distributing

the original 3-D array ill one, two and three of its dimensions. Tile transpose algorithm

does not divide the R and ,5' arrays into subproblems as is done in the chained

algorithm. The use of subproblem in the following estimates refers to the number of

slices (2-D case) or tubes (3-D case).
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9.7 Transpose algorithm: 1-D partitioning

See Figure 31.

• number of nodes in each distributed dimension

n : N

• compute number of messages

m = 1 distributed direction

• 2 transposes

• n blocks(messages) per _tep

• n- 1 steps

m = 2n(n- 1) messages

• compute message size

s = L _

/n
* L

/n

size of independent dimension

strips

size of dependent dimension

strips

s = La/n _ size of each block (message)

• results (neglecting tlle lower order terms of m)

m = 2N 2

s = La/N 2

t = 2L a

f = 2
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Figure 31: Transpose algorithm for a 1-D data distribution
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9.8 Transpose algorithm: 2-D partitioning

See Figure 32.

• number of nodes in each distributed dimension

n = N 1/2

• compute number of messages

m = 2 distributed directions

m

* 2 transposes

, n blocks(messages) per step

* n- 1 steps

* n subproblems or slices

4n2(n- 1) messages

• compute message size

s = L 2 size of independent dimension of each .slice

/ n 2 strips

* L size of dependent dimension

/ n strips

= L3/n3 size of each block (message)

• results (neglecting the lower order terms of rn)

m = 4N 3/2

s = La/(N 3/2)

t = 4L 3

f = 4
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3-D Array

L

L

L

division between distributed

strips

division between non-distributed

strips

ne of n slicesL

R or S array slice

L

L * L/n

I I

L/n

L

_ conceptual mapping

_size of each message, [L/n]*[(L*L)/(n*n)]

Figure :32: Transpose algorithm for a 1-D data distribution
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9.9 Transpose algorithm: 3-D partitioning

See Figure 33.

* number of nodes in each distributed dimension

n = N l/a

• compute number of messages

m = 3 distributed directions

• 2 transposes

• n blocks(messages) per step

• n- 1 steps

• n 2 subproblems 07" tubes

m = 6n2(n - 1) messages

• compute message size

s = L 2

/n a

,L

/n

s = L3/n 4

size of independent dimension of each tube

strips

size of dependent dimension

strips

size of each block (message)

• results (neglecting the lower order terms of m)

s = La/(N 4/3)

m = 6N 4/3

t = 6L 3

f = 6
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